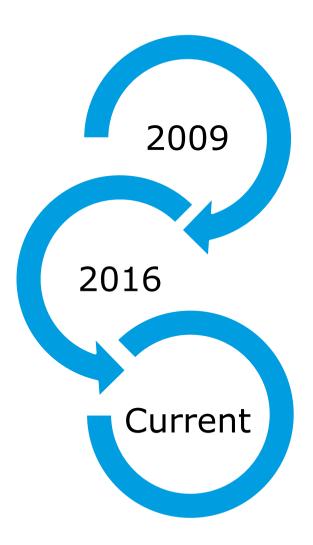

KEEPING RECEIVING WATERS SAFE: REMOVING POLY- & PERFLUOROALKYL SUBSTANCES (PFAS)

PFAS- AT A GLANCE

- Human-made substances
- Do not hydrolyze, photolyze or biodegrade under typical environmental conditions and are extremely persistent in the environment
 - C-F bond is one of the strongest bonds
- Found in soil, air and groundwater at sites around the world
- Toxicity, mobility and bioaccumulation potential pose potential adverse effects for the environment and human health
- Regulatory authorities have developed health-based advisories or screening levels


 PFOS and PFOA have been detected globally in the tissues of fish, bird and marine mammals.

CONTROLLING PFAS

USEPA issues lifetime Health Advisory

- PFOS = 70 ng/L
- PFOA = 70 ng/L

USEPA issues Provisional Health Advisory

- PFOS = 200 ng/L
- PFOA = 400 ng/L.

Continuous regulatory changing climate

• Where are we going?

HISTORICAL COMMERCIAL USES OF PFOS/PFOA

- Fabric coatings
- Carpet coatings
- Paper coatings
- Floor polish
- Alkaline cleaners
- Denture cleaners
- Shampoos
- Insecticides

- Aqueous film forming foam AFFF (fire-fighting agents)
- Aviation hydraulic fluid
- Mining/oil well surfactant
- Acid rust suppressant
- Metal plating
- Electronic etching bath

POTENTIAL TREATMENT TECHNOLOGIES

Treatment Technology	Description
Granular Activated Carbon (GAC)	 Good PFAS removal efficiency 80 – 99% can be achieved The isotherms are very steep at low concentrations: there are a limited number of adsorption sites with very favorable adsorption energies resulting in high doses Two stage systems typically required Three stage in some wastewaters Slightly better capacity at lower pH values Requires reactivation at very high temperatures or disposal of spent carbon
Polymeric Resin Adsorption	 PFC removals can be as high as 95% Long contact times typically required Requires resin regeneration and regenerant treatment
Membrane Filtration	 RO can remove nearly all PFCs - up to 99% PFOS removal UF can achieve 70-80% removal NF can achieve 85-90% removal Produces a concentrate that requires additional treatment
Advanced Oxidation (AO)	 Can remove all PFAS compounds in wastestreams depending upon technology Supercritical Water Oxidation Incineration Requires high energy

GENERATOR WASTEWATER TREATMENT EXAMPLE

- One of the first US comprehensive treatment evaluations conducted
- Limited public data
 - Industry proprietary property
- Challenging analytical
- Aggressive environment

GENERATOR WASTEWATER TREATMENT EXAMPLE

• Treatability included:

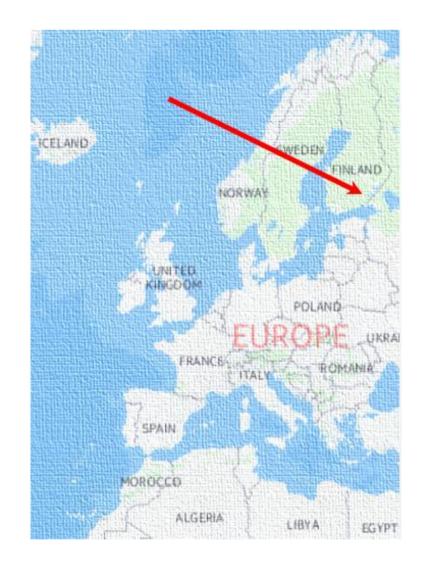
Bench-scale

- Membrane technologies
- Granular Activated Carbon
- Foam fractionation
- Solvent extraction
- Supercritical oxidation
- Ion exchange
- Freeze crystallization
- Evaporation
- Supercritical CO₂ Extraction
- XAD resins
- C-18 resins
- Alum coagulation
- Organo clays
- Spun glass fiber
- Mycell absorption
- Glass beds & powder
- Zeolite

Pilot-scale

- Granular Activated
 Carbon
- Supercritical Water Oxidation
- Foam fractionation
- Freeze crystallization

GENERATOR WASTEWATER TREATMENT EXAMPLE


- One of the largest industrial GAC treatment systems in the US
 - 26 vessels containing 20,000 lbs each of installed GAC
 - Capacity to treat a combined flow of over 3 mgd
 - Provided effective treatment of below regulated levels
- Facility has since expanded treatment capacity

MUNICIPAL WASTEWATER TREATMENT EXAMPLE

- New underground treatment plant in Mikkeli Finland
- Selected primary treatment technology: Membrane Bioreactor Reactor
- More stringent requirements coming in EU for micro pollutants
- Main concern in Mikkeli: PFOS
 - PFOS <0.00065 μg/l
- Advanced tertiary treatment required

MUNICIPAL WASTEWATER TREATMENT EXAMPLE

- Based on pilot testing results, MBR process didn't remove PFOS
- Developed economical¹ and technical assessment of the following potential technologies:
 - Ozonation
 - Reverse Osmosis (RO)
 - Granular Activated Carbon (GAC) Adsorption
 - Advanced Oxidation Process (AOP)
- Adsorption and filtration were found efficient for PFOS removal
- GAC and RO were selected as most cost-effective for this case

THANK YOU

Janet Egli, PE Global Service Line Leader Water and Wastewater Treatment

D +1 615 277 7511 M +1 615 642 6102 jegli@Ramboll.com